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Abstract

Off-Policy policy gradient algorithms are often preferred to on-policy algorithms due to their sample efficiency. Al-
though sound off-policy algorithms derived from the policy gradient theorem exist for both discrete and continuous
actions, their success in discrete action environments have been limited due to issues arising from off-policy corrections
such as importance sampling. This work takes a step in consolidating discrete and continuous off-policy methods by
adapting a low-bias, low-variance continuous control method by relaxing a discrete policy into a continuous one. This
relaxation allows the action-value function to be differentiable with respect to the discrete policy parameters, and avoids
the importance sampling correction typical of off-policy algorithms. Furthermore, the algorithm automatically controls
the amount of relaxation, which results in implicit control over exploration. We show that the relaxed algorithm performs
comparably to other off-policy algorithms with less hyperparameter tuning.
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1 Introduction

Policy gradient methods are a class of algorithms used to solve reinforcement learning problems (RL) by directly optimiz-
ing a parameterized policy. On-policy learning uses data collected from this policy to compute gradient updates. Despite
being rather successful [1], they can be sample inefficient as new data needs to be collected for each gradient update.
Consequently, Off-policy learning is preferred due to its ability to re-use data collected from older policies. In particular,
off-policy methods support data re-use from multiple behaviour policies, while learning a desired target policy.

While algorithms such as the Deep Deterministic Policy Gradient (Deep DPG) [2] exist for environments with continuous
actions, there has not been much progress for discrete actions due to the lack of a viable discrete reparameterization
approach. Algorithms like off-policy actor critic (Off-PAC) [3] and Actor Critic with Experience Replay (ACER) [4] can be
derived for discrete action environments. However, the reliance on the importance sampling corrections limits their use
in practice due to its high variance gradient estimate [5]. Recent work introduces Actor-Critic with Emphatic Weightings
(ACE) [6] as another approach to discrete action off-policy learning that introduces the first “off-policy policy gradient
theorem”. However, ACE also requires estimating corrections and has not yet been demonstrated in more complex
domains.

Our work aims to use successful continuous control algorithms [7] for discrete action environments by using continuous
relaxations of samples from a discrete policy [8]. In essence, we convert the learning of a discrete policy into a continuous
control problem. A particularly interesting side effect of the relaxation is the introduction of a temperature parameter, τ ,
that controls the amount of relaxation: The temperature can be automatically tuned [9], thereby controlling the entropy
of the policy and eliminating the need for external exploration noise. We call this approach a Autotuned, Relaxed,
Reparameterized Discrete Domain algorithm (AR2D2 ). Our contributions are:

1. Using continuous relaxations of discrete categorical samples [10, 8] to find the gradient of the action-value func-
tion, resulting in an algorithm similar to DPG [11].

2. Automatic control of the relaxation allowing sufficient exploration and eventual recovery of the optimal policy
using a novel objective that balances variance reduction [9] and action-value maximization.

2 Background

We start by covering the off-policy reinforcement learning setting before considering the continuous relaxation in Sec-
tion 2.1. Consider a Markov decision process 〈S,A,R, T , γ〉 where S is a set of states, A is a set of discrete actions,
R : S ×A → R is the reward function, T : S ×A× S → [0, 1] is the state-transition probabilities, and γ ∈ [0, 1] is the dis-
count factor. The expected discounted return from a state, s0, is given by the value function: V π(s) = Eπ[

∑
t γ

trt|s0 = s].
In policy gradient methods, we search for a parameterized target policy, πθ, that maximizes J(θ) =

∑
s dπθ (s)V

πθ (s)
where dπθ (s) is the stationary state distribution under the policy πθ.

However, in case of off-policy learning the samples are drawn from the state distribution under the behaviour policy,
µ(s|a) . Therefore, we optimize J(θ) =

∑
s dµ(s)V

πθ (s) where dµ(s) is the stationary state distribution under µ.

Importance sampling techniques (IS) can be used to correct for the discrepancy in the behaviour and target policies [5].
However, IS corrections, being high variance, often make algorithms such as Off-PAC [3] difficult to use in practice.
Alternatively, we can use the deterministic policy gradient theorem [12] to avoid IS corrections by considering determin-
istic policies, πθ(a|s) = a. In particular, DPG proposes a variant of Q-learning for policy gradients, where instead of
taking a greedy policy improvement, we can directly improve the policy in the direction of the gradient of the action-
value function: ∇θJ(θ) =

∑
s

dµ(s)∇θQπθ (s, πθ(s)). One limitation of the DPG is that it requires differentiable samples.

Differentiable reparameterizations exist for continuous distributions like the Gaussian [13, 14] and have been applied to
continuous control problems in RL [11, 7]. While relaxing a categorical distribution has been explored in reinforcement
learning as a action-depentent control variate [9] and a policy [15], it has not been fully developed into a viable alternative
to well-known algorithms such as DQN [16].

2.1 Continuous Relaxations for Discrete Variables

In this section, we cover background material related to discrete reparmetrization of categorical distributions [10, 8].
Consider the general objective of optimizing parameters θ of a probability distribution, pθ, to maximize the function f .
The gradient is defined as ∇θL(θ) = ∇θ Ez∼pθ [f(z)]. When f is not differentiable the log-deriviative identity1 can be
applied to obtain the REINFORCE estimator, ∇θL(θ) = Ez∼pθ(z)[f(z)∇θ log pθ(z)] which can be estimated using Monte-
Carlo sampling [17].

1The log-derivative identity is ∇x = x∇ log x
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In cases where f is differentiable and pθ can be reparameterized through a deterministic function, z = g(ε, θ), a low variance
gradient estimate can be be computed by shifting the stochasticity from the distributional parameters to a standardized
noise model, ε [13, 14]. Specifically, we can rewrite the gradient computation as∇θL(θ) = Eε[∇gf(g(ε, θ))∇θg(ε, θ)].
The Gumbel-Max trick [18] offers such a reparameterization for the categorical distribution: z = argmaxi[gi + log ηi]
where ηi are the log probabilities for a Categorical distribution and gi are independent and identically distributed noise
variables from the Gumbel(0, 1) distribution. While such a reparametrization shifts the distribution parameters to a
deterministic node, it introduces a non-differentiable argmax. The Gumbel-Softmax (GS) [10] distribution proposes to
replace the argmax with a softmax and temperature parameter τ :

yi =
exp((log ηi + gi)/τ)∑k
j=1 exp((log ηj + gj)/τ)

(1)

where τ → 0 recovers the argmax, and τ → ∞ recovers the uniform distribution. Due to the relaxation, the softmax
operation is differentiable providing continuous differentiable samples from this distribution. Computing argmaxi yi
corresponds to sampling from a categorical distribution and allows execution in a reinforcement learning environment.

3 Off-Policy Policy Gradients with Gumbel Reparameterization

In this section we discuss how to introduce the Gumbel-Softmax as an alternate parameterized policy for discrete actions
in the off-policy setting. We will do this by deriving the gradient for the action-value function to do policy improvement
by following the grading direction.

Recall the off-policy learning setup, where the goal is to learn a target parameterized policy πθ while collecting data from
a behaviour policy µ. Consider the gradient of the action-value function:

∇θJ(πθ) = Es∼dµ(s)[∇aQ(s, a)∇θπθ(s)] (2)

Like in DPG, a = πθ(s), where πθ is implemented using a Gumbel-Softmax policy with a relaxation parameter, τ (Equa-
tion 1). These relaxed discrete actions allow us to take gradients of Q w.r.t. the policy parameters θ, effectively back-
propagating through the sampling process. To execute actions in the environment, continuous samples from relaxed
policies are discretized using argmax so that they correspond to samples from a categorical distribution. In supervised
learning tasks, the Gumbel-Softmax temperature parameter is decayed [10] to reduce the relaxation over time. In re-
inforcement learning, premature annealing may lead to a suboptimal deterministic policy as the policy would fail to
sample a diverse number of trajectories (i.e. reduced exploration). The temperature, τ , must be carefully controlled to
prevent this outcome. In this work we consider τ is learned during optimization.

We now describe an off-policy actor-critic algorithm we call AR2D2 . We first describe the standard critic update to
learn Q, and then describe how the actor parameters are updated. Finally, we discuss how the trainable relaxation
parameter is automatically tuned in our setup for exploration and variance minimization. The algorithm is summarized
in Algorithm 1.

3.1 Critic Update

We use a Q function parameterized by w, where in our case w are the parameters of a neural network. Unlike DPG, our
policy is discrete and allows the Q function to be updated by minimizing the mean squared error (MSE) between Q and
a fixed target. To address overestimation bias [19] in the critic update, we employ Double Clipped Q-Learning [7]. The
target Q in the MSE now consists of taking the minimum of two Q-functions in the critic update:

L(w) =
1

N

∑
i

(ri + γ min
i=1,2

Q′w̃i(si+1, πθ(si+1))−Qw(si, ai))2 (3)

where (si, ai, ri, si+1) are a collection of experiences from the environment.

3.2 Actor Update

Expanding the Gumbel-Softmax policy definition from Equation 1 reveals three sets of variables: the categorical proba-
bilities {η1, . . . , η|A|}, the Gumbel noise {g1, . . . , g|A|} and the temperature parameter τ . The categorical parameters are
implemented with a deep neural network and updated by following the gradient in Equation 2.

3.3 Temperature Update

While the addition of the temperature is added to Gumbel-Softmax as a requirement for being differentiable, its intro-
duction offers a unique opportunity in the reinforcement learning domain to automatically control the balance between
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(a) Performance on LunarLander-v2 (b) Performance on CartPole-v1 (c) Temperature auto-tuned in training

Figure 1: Evaluation performance for three algorithms on (a) LunarLander-v2 and (b) CartPole-v1. (c) shows the
behaviour of temperature during learning. (a) While all three algorithms solve LunarLander (> 200 reward), AR2D2
displays lower variability between random seeds. (b) While ACER and DDQN show high variance for CartPole, AR2D2
converges quickly even when using the same hyperparameters as Lunar Lander. We plot a smoothed mean-return along
with standard deviation (shaded) for 5 random seeds. (c) The temperature increases at the start of learning and decays
automatically over time.

exploration and exploitation: adjusting the temperature from zero to infinity interpolates the distribution between a
deterministic argmax and a uniform distribution. The role of τ is then similar to the downstream impact of entropy reg-
ularization in that it controls policy stochasticity [20, 21] and avoids the need for external exploration noise often added
to off-policy algorithms [16, 2, 19]. Given τ is part of the same computational graph which optimizes η, we formulate
two separate gradient updates for τ , one to maxizime discounted return and another to minimize variance.

In order to stabilize the changing policy, we minimize the policy gradient variance w.r.t. τ , as proposed in [9], who
optimize the temperature of a relaxed hard threshold control variate. The gradient of the variance in gradient wrto τ is
formulated as:

∂

∂τ
Var(g(πη)) =

∂

∂τ

(
E[g(πη)2]− E[g(πη)]2

)
= E

[
2g(πη)

∂g(πη)

∂τ

]
(4)

where g(πη) is the gradient of Equation 2 w.r.t. the categorical parameters η. The second update takes a gradient ascent
step w.r.t. τ in the direction which maximizes Q. Combining the two, we get the following update for τ :

τt+1 = τt + αQτ [∇aQ(s, a)|a=πθ(s)∇τπθ(s)]− α
σ
τ∇τVar(g(πθ)) (5)

where αQτ and αστ are respective learning rates for the gradien updates to maximizeQ and minimize the gradient variance
from Equation 4. We find that a high αQτ learning rate, allowing the policy to quickly interpolate between exploration
and exploitation, is key to quick convergence of the algorithm. The algorithm is summarized in Algorithm 1.

4 Experimental Results

In this section we show the viability of using continuous relaxations by comparing with two state-of-the-art off-policy RL
algorithms: Double Deep-Q Learning (DDQN) [19] and ACER [4] on two discrete action environments, LunarLander-v2
and CartPole-v1 [22]. Algorithms are compared based on rollouts of the greedy policy. We tune hyperparameters on
LunarLander-v2 and transfer them without modification to CartPole-v1.

All methods solve LunarLander-v2 (Figure 1a). Interestingly, the hyperparameters for AR2D2 found on LunarLander-v2
transferred without modification onto CartPole-v1 unlike ACER and DDQN (Figure 1b) for which we had to fine-tune
the learning rate. This suggests that the auto-tuning mechanism might provide increased stability and robustness to
hyperparameters in our algorithm. Additionally, we note the remarkable stability of AR2D2 on CartPole (Figure 1b
compared to ACER and DDQN, despite the simplicity of the domain. A more robust algorithm would be a strong
addition to the current repertoire of RL algorithms and a further exposition of robustness will be left to future work.

In Figure 1c we can see how the temperature parameter increases substantially at the beginning of training, while quickly
decreasing around 100,000 steps. An increase in the temperature τ suggests both increased exploration and smoothing
of the problem early on during training.

5 Conclusion

In this work, we have shown empirical evidence for using continuous relaxations of discrete random variables in an off-
policy policy gradient algorithm. Particularly interesting is the dual purpose of the temperature parameter τ . It controls
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both the relaxation and the data collected from the environment, i.e. exploration. Specifically, the relaxation can be seen
as a form of smoothing and its relationship to entropy regularization will be explored in future work [21].

In summary, our work has unified discrete and continuous actions in the same off-policy policy gradient algorithm.
We expect that other RL algorithms that have previously faced the “differentiabiliy” requirement can successfully take
advantage of the relaxation. Future work will consider a more thorough theoretical and empirical investigation of per-
formance as well as the robustness of AR2D2 to hyperparameters.
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6 Appendix

The algorithm derived from the updates in Section 3 is shown below:

Algorithm 1 AR2D2

Input: critic networks Qw1 , Qw2 , and Gumbel-Softmax actor network πη and πτ
Input: update actor step d, temperature learning rate ατ , update weight β
Initialize target networks w′1 ← w1, w

′
2 ← w2, θ

′ ← θ
Initialize replay memory D
for episode = 1 to M do

Initialize st
for t = 1 to T do

Select action a = πθ(st)
Discretize action a using argmax to obtain â.
Observe (r, st+1) = env(â)
Append D with tuple (st, a, r, st+1)
Sample mini-batch of N transitions (s, a, r, s′) from D

y ←
{
r for terminal state s
r + γmini=1,2Qw̃i(s

′, a) for non-terminal states
Update critics wi ← argminwi N

−1∑(y −Qwi(s, a))2
if tmodd then

Update policy gradients:
∇ηJ(η) = N−1

∑
∇aQ(s, a)|a=πθ(s)∇ηπθ(s)]

∇τJ(τ) = N−1
∑
∇aQ(s, a)|a=πθ(s)∇τπθ(s)]

∇τVar(g(πθ)) = E[2g(πθ)∇τg(πθ)]
Update target networks:
w′i ← βwi + (1− β)w′i
η′ ← βη + (1− β)η′
τ ′ ← βτ + (1− β)τ ′

end if
end for

end for
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